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Abstract 

This work applies finite element (FE) modeling and machine learning (ML) techniques to investigate 

the resistance of slender steel columns at elevated temperatures. First, a numerical study is performed 

with the FE software SAFIR to evaluate the columns’ response for a range of cross-sections and 

boundary conditions. The FE model is used to generate a large dataset for training and testing three 

types of ML models: support vector regression (SVR), artificial neural network (ANN), and 

polynomial regression (PR). The trained models are compared against experimental data and an 

analytical model. The results show that the ML models provide more accurate predictions in the 

training and testing datasets compared with the analytical model. The predictions from the ANN and 

SVR also reasonably agree with the experimental data. These results suggest that ML techniques can 

be used to derive efficient surrogate models for capacity prediction of such members in fire. 
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1 INTRODUCTION 

The fire behavior of slender steel columns is influenced by the complex interaction between local, 

global, and distortional instability modes at elevated temperatures. This behavior has been 

investigated in the literature using high-fidelity FE models, but the computational cost limits the 

ability to conduct parametric analyses needed to derive robust design methods. An alternative is the 

use of analytical methods derived from mechanics-based principles and experimental observations. 

For predicting the resistance of slender steel members at elevated temperature, a simple analytical 

method is provided in the Eurocode 3 part 1.2 (CEN 2005). Couto et al. (Couto et al. 2015) recently 

proposed an improvement to this method based on the effective cross-section and the yield strength 

at 2% total strain for Class 3 and Class 4 cross-sections. While analytical methods are very useful for 

design, they are necessarily based on simplifying assumptions.  

Machine learning (ML) techniques, increasingly used in many engineering fields, provide an 

opportunity to derive efficient surrogate models and identify prevailing parameters for capacity 

prediction (Salehi and Burgueño 2018). The adoption of ML techniques in structural fire engineering 

could provide a way to derive low-cost models for predicting the behavior of complex members and 

structural assemblies subject to fire (Naser 2019, Chaudary et al. 2020, Naser 2021). This work 

studies the application of three types of ML techniques to determine the resistance of I-shaped cross-

section slender steel columns at elevated temperature. To build the dataset required for training of the 

ML models, high-fidelity FE simulations with shell elements are carried out using the software 

SAFIR. The trained ML models are compared with Couto et al.’s analytical model and with 

experimental data not included in the training dataset.  

2 FINITE ELEMENT MODELING 

The FE software SAFIR (Franssen and Gernay 2017) is applied to predict the resistance of slender 

steel columns at elevated temperature and generate the datasets to construct the ML models. The 

ability of the FE models to capture the behavior of slender steel columns subjected to uniform heating 

is validated against eight experimental tests on Class 3 and 4 I-shaped cross-section columns as 

described in (Franssen et al. 2016). The critical temperature and failure mode observed in the tests 

are well captured by SAFIR. For critical temperature, the average ratio of SAFIR/Test is 1.007 with a 



standard deviation of 0.03. Therefore, the SAFIR numerical models can be used to generate the 

datasets for ML.  

An extensive FE study is conducted to obtain the load capacity of columns at elevated temperature. 

Considered cross-sections range from IPE300 to IPE600. Ambient temperature steel grade include 

S235, S355 and S460. Temperature at which the capacity is evaluated is assumed uniform in the 

section and ranges from 300-800°C with a 100°C increment. The length of the columns is 4.5 meters, 

while different boundary conditions are studied. A total of 1728 data points are generated. 

To build the numerical models, geometric imperfections are obtained for local and global modes 

through buckling analyses with the software Abaqus to obtain the eigenmodes. For global 

imperfection, the amplitude follows the design recommendation, i.e. L/1000, where L is the length of 

the column. For local imperfection, the amplitude is calculated as 80% of the geometric fabrication 

tolerances as recommended in (CEN 2008; Couto and Real 2021). In this study, the amplitudes of 

local imperfections are calculated following Table 1 in (Couto and Real 2021). The global 

imperfection and local imperfection are combined following the recommendation of Annex C in Part 

1-5 of Eurocode 3 (CEN 2006). The lowest eigenmode is the leading imperfection and the amplitude 

of the other eigenmode is reduced to 70%.  

The coordinates of the nodes with geometric imperfections are then exported to SAFIR. The members 

are discretized using 4-noded shell elements. A sensitivity analysis on the mesh size is conducted 

showing convergence of the results with 120 elements on the length, 6 elements on the flange, and 

10 elements on the web. Two rigid 100 mm thick end plates are added at both ends of the column, as 

shown on Figure 1. The size of the horizontal plate equals the web height and flange width. The width 

of the vertical plate equals the web height and its length is 150 mm. The load is axially applied on the 

edge of the vertical plate on the top with no eccentricity such that the load can be distributed evenly 

on the web and flange. The rotations of the shell edge of the vertical plate are either fixed or pinned 

in Mx, My, and Mz directions. The pattern of residual stresses follows the one for hot-rolled columns 

(Couto and Real 2021) as shown in Figure 1(b). The residual stress is added to the integration points 

of the shell element and transformed into residual strains by SAFIR; the detailed procedure can be 

found in (Lopes 2009). The ultimate load-bearing capacity of the columns is calculated by SAFIR by 

first uniformly increasing the temperature in the section up to the target value and then progressively 

loading the column until failure. 

 
 

(a) (b) 
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Fig. 1 The numerical model in SAFIR: (a) shell model for IPE500 column at 300 ℃; (b) cross-section 

dimensions and residual stresses; (c) boundary conditions with end plates and pinned-fixed supports 



 

3 MACHINE LEARNING MODELS 

The 1728 data points obtained from the FE analysis are randomly divided into two groups for training 

and testing the ML models, with a ratio of 9:1. The trained ML models are also validated against 

experimental data published in (Kucukler et al. 2020) and in (Wang et al. 2014). Cross-validation is 

applied to tune the parameters in the ML models. The input parameters and output are summarized 

in Table 1, in which 𝑁𝑢,𝑇 is the load capacity at elevated temperature, 𝑁𝑢,20 is the load capacity at 20 

℃, ℎ𝑤/𝑡𝑤 and 𝑏𝑓/2𝑡𝑓 are the adimensional web and flange dimensions, 𝐹𝑦_𝑤𝑒𝑏/𝐸 and 𝐹𝑦_𝑓𝑙𝑎𝑛𝑔𝑒/𝐸 

are the adimensional web and flange yield strengths, and top and bottom are the boundary conditions 

at the two ends (either fixed or pinned). The ℎ𝑤/𝑡𝑤 of the cross-sections ranges from 31.1 to 52.5 

while 𝑏𝑓/2𝑡𝑓 ranges from 4.7 to 8.2. Three ML methods are considered herein, namely SVR, ANN 

and PR as described in the next sections. The Python package Scikit-learn (Pedregosa et al. 2011) is 

used for the implementation.  

Table 1. Parameters for the ML models 

3.1 Support vector machine regression (SVR) 

SVR is developed as an extension of the support vector machine (SVM), which aims to find a 

hyperplane in an n-dimensional space (n is the number of features, i.e. input parameters) that classifies 

the training datasets in different classes. While the objective of SVM is to find a hyperplane that has 

the maximum margins (±𝜀), the extension SVR aims to find a flat hyperplane with margins (±𝜀) that 

accept the data points within or on the margins while rejecting the data points outside the margins. 

The hyperplane can be written in Equation (1) for linear SVR: 

 𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏 (1) 

in which 𝑥𝑖 and 𝑦𝑖 are the ith input and output in the training dataset,  𝑤 is the weight matrix and b is 

the bias.  

For nonlinear SVR, the hyperplane can be written as: 

 𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 (2) 

in which 𝜑(𝑥𝑖) is the nonlinear kernel function that maps the input vectors to a higher dimension 

space. The deviation of points within the margins (±𝜀) is zero. The deviation of points outside the 

margins (±𝜀) is the distance of these points to the margins (𝜉𝑖 and 𝜉𝑖
∗). The loss function of SVR is 

written as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1  (3) 

Constraints: 

𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖 

𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗ 

𝜉𝑖, 𝜉𝑖
∗ ≥ 0   

in which 
1

2
‖𝑤‖2 is the regularization term added to seek the flattest hyperplane with a small weight. 

C is a trade-off between the accepted tolerance of deviation 𝜀 and the flatness of the solution. 

input parameters output 

ℎ𝑤/𝑡𝑤 𝑏𝑓/2𝑡𝑓 𝐹𝑦_𝑤𝑒𝑏/𝐸 𝐹𝑦_𝑓𝑙𝑎𝑛𝑔𝑒/𝐸 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(℃) 𝑡𝑜𝑝 𝑏𝑜𝑡𝑡𝑜𝑚 𝑁𝑢,𝑇/𝑁𝑢,20 



3.2 Artificial neural network (ANN) 

The ANN consists of several neurons arranged in multiple layers (input layer, hidden layer, and output 

layer) and the connections between them. The neurons are the main process unit which is a linear or 

nonlinear function describing the relationship of input and output of the neuron. In this work, a feed-

forward and backpropagation algorithm is used to build the ANN. The feed-forward means the 

information is transmitted from the input layers to the output layers. Once the ANN model is built, 

the training process starts to assign random values to the weights connecting the neurons in the input, 

hidden, and output layers. The input parameters are fed in the neurons in the input layers and 

multiplied by the weighted values. The sums of the multiplication and bias are put through a transfer 

function or activation function to generate the output of the neurons in the hidden layers or the output 

layers. Typical activation functions include linear, logistic sigmoid, hyperbolic tan function and 

rectified linear unit function. The output of neurons can be written as: 

 𝑜𝑢𝑡𝑝𝑢𝑡𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖𝑎𝑠𝑗)𝑛
𝑖=1  (4) 

in which 𝑜𝑢𝑡𝑝𝑢𝑡𝑗 is the output of jth neuro and 𝑥𝑖 is the input from ith neuron in the last layer. 𝑓 is 

the transfer function. 𝑏𝑖𝑎𝑠𝑗  is the bias for jth neuro. The predicted values in the output layer are 

compared to the known observations. The difference of predicted and known values are used to adapt 

the weights through the backpropagation algorithm. The forward feed and backpropagation algorithm 

is repeated to adjust the weights iteratively until the error between known and predicted value reaches 

an accepted tolerance. The optimal hidden layer in this work is 6.  

3.3 Polynomial regression (PR) 

The general form for polynomial regression is written as: 

 𝑌 = 𝑋𝜔 + 𝜀 (5) 

in which 𝑌 is the vector of responses, 𝑋 is the feature matrix, 𝜔 is the coefficient and 𝜀 is the bias. 

The polynomial regression extends the inputs of the linear model, which is obtained by raising the 

initial inputs to a power. The new inputs are created with degrees less than or equal to the specific 

order. The new feature matrix includes 1) bias; 2) converting the initial inputs to their higher-order 

terms for each degree; 3) combination of all pairs of initial inputs. For instance, if there are two inputs, 

[𝑥1,𝑥2], a degree-2 polynomial expansion would produce a new feature matrix [1,𝑥1,𝑥2,𝑥1
2,𝑥1𝑥2, 𝑥2

2].  

Models with higher degrees may closely fit most of the data in the training dataset, however, it may 

also capture the noises in the data, resulting in a larger error on the testing dataset (i.e. over-fitting). 

To prevent over-fitting in polynomial regression, ridge regression is applied to fit the polynomial 

feature matrix. The ridge regression adds a regularization term to the sum of squares of residuals. The 

loss function of ridge regression is written as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ‖𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗‖𝑚
𝑗=0

2𝑛
𝑖=1 + 𝜆 ∑ ‖𝑤𝑗‖

2𝑚
𝑗=0 (𝜆 > 0) (6) 

in which the 𝑦𝑖  is the known observation, ∑ 𝑥𝑖𝑗𝑤𝑗
𝑚
𝑗=0  is the predicted value, and  𝜆  is the tuning 

parameter which controls the complexity of the model. As 𝜆  grows larger, the ridge regression 

effectively shrinks coefficient 𝑤𝑗  to be 0 and selects a small subset of features to build the model, 

which prevents training a more complex model and thus avoid over-fitting.  

4 RESULTS 

To quantify the performance of the different models, the R² value is evaluated for the models against 

the training and testing dataset and the experimental data. Table 2 gives the results for the SVR, ANN, 

and PR (degree 2) models. Predictions by the analytical model by (Couto et al. 2015) with 𝜒𝑓𝑖 from 

Eurocode 3 Part 1.2 (CEN 2005) are also included. The three ML models provide better agreement 

with the training and testing dataset than the analytical model. For the validation against experimental 

data, 16 data points obtained from (Kucukler et al. 2020) and (Wang et al. 2014) are used. The 



predicted capacity from the ANN agrees best with the experimental data with 𝑅2 of 0.945, followed 

by PR and the analytical model. The SVR model does not agree well with the experimental data. 

Table 2. Performance of ML and analytical models 

Regressor (R²) Train Test Experiment 

SVR 0.999 0.998 0.087 

ANN 0.999 0.999 0.945 

PR (degree 2) 0.976 0.980 0.864 

Analytical (Couto et al. 2015) 0.948 0.943 0.838 

Figure 2 (a)-(d) plot the predicted capacity 𝑁𝑢,𝑇/𝑁𝑢,20 using SVR, ANN, PR, and analytical models 

against the numerical estimations from SAFIR. For training and testing datasets, the predicted 

capacities are scattered in six groups, corresponding to the elevated temperature levels. The results 

from SVR, ANN, and PR agree well with the capacity evaluated by SAFIR. The ANN and PR models 

are also able to predict the capacity in the experimental datasets with good agreement. Overall, the 

trained ANN and PR models, which are built on extensive validated FE analysis data, can predict the 

resistance of the slender steel columns at elevated temperature with high accuracy. The performance 

of the ML models can be further improved by considering a larger dataset including a greater range 

of inputs. For instance, different column lengths can be included in the training dataset to improve 

prediction of capacity when global buckling occurs. 

  

(a) (b) 

  

(c) (d) 

Fig. 2 Predicted capacity 𝑁𝑢,𝑇/𝑁𝑢,20 for slender steel columns at elevated temperature: Comparison between 

SAFIR finite element model and (a) SVR; (b) ANN; (c) PR; (d) Analytical model (Couto et al.) 



5 CONCLUSIONS 

This study investigated the potential of Machine Learning (ML) models to capture the capacity at 

elevated temperature of slender steel columns. A numerical study based on validated nonlinear finite 

element modeling with shell elements was conducted to build a dataset of 1728 data points for 

columns with a range of cross-sections, temperature, yield strength and boundary conditions. The 

columns exhibited failure by local, global, and distortional buckling. The dataset was used to train 

and test three ML models, namely based on support vector regression (SVR), artificial neural network 

(ANN), and polynomial regression (PR).  

The results indicate that the three tested ML models are able to predict the resistance of the columns 

in the training and testing dataset with an excellent accuracy (𝑅2 greater than 0.998 for SVR and 

ANN, and greater than 0.976 for PR). The ML models agreed better with the FE data than a state-of-

the-art analytical model. The ANN and PR models were also able to capture experimental data not 

used to train the model with a 𝑅2 of 0.945 and 0.864, respectively. It is expected that the accuracy 

against test data could be further improved by increasing the training dataset and including other 

inputs in the ML models. This work shows that the ML models are able to accurately predict the 

resistance of columns under uniform heating while also being computationally efficient. In future 

works, more complex configurations such as structural assemblies or localized fire exposures will be 

explored. 

REFERENCES 

CEN, EN., 2008, 1090-2: execution of steel structures and aluminium structures–part 2: technical requirements 

for steel structures, European Committee for Standardisation, Brussels. 

CEN. EN.,2005,1993-1-2, Eurocode 3: design of steel structures — part 1–2: general rules —structural fire 

design. Brussels: European Committee for Standardisation. 

CEN. EN.,2006, 1993-1-5, Eurocode 3 — design of steel structures — part 1-5: plated 

     structural elements. Brussels: European Committee for Standardisation. 

Chaudhary R.K., Jovanović B., Gernay T., Van Coile R., 2020. Generalized fragility curves for concrete 

columns exposed to fire through surrogate modelling. In Proceedings of the 11th International Conference 

on Structures in Fire (SiF2020). 

Couto C, Real P.V., 2021. The influence of imperfections in the critical temperature of I-section steel members, 

Journal of Constructional Steel Research, 179: 106540. 

Couto C, Real P.V., Lopes N, Zhao B., 2015. 'Resistance of steel cross-sections with local buckling at elevated 

temperatures', Journal of Constructional Steel Research, 109: 101-14. 

Franssen J.M, Gernay T., 2017. Modeling structures in fire with SAFIR®: Theoretical background and 

capabilities, Journal of Structural Fire Engineering. 

Franssen J.M, Zhao B, Gernay T., 2016. Experimental tests and numerical modelling on slender steel columns 

at high temperatures, Journal of Structural Fire Engineering. 

Kucukler M, Xing Z, Gardner L., 2020. Behaviour and design of stainless steel I-section columns in fire, 

Journal of Constructional Steel Research, 165: 105890. 

Lopes N., 2009. Behaviour of Stainless Steel Structures in Case of Fire, Ph.D. thesis 

     Universidade de Aveiro, Portugal. 

Naser M.Z., 2019. Fire resistance evaluation through artificial intelligence-A case for timber structures. Fire 

safety journal, 105, 1-18. 

Naser M.Z., 2021. Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering 

and Sciences. Fire Technology, 1-44. 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, 

Dubourg V., 2011. Scikit-learn: Machine learning in Python, the Journal of machine Learning research, 12: 

2825-30. 

Salehi H, Burgueño R., 2018. Emerging artificial intelligence methods in structural engineering, Engineering 

structures, 171: 170-89. 

Wang W, Kodur V, Yang X, Li G., 2014. Experimental study on local buckling of axially compressed steel 

stub columns at elevated temperatures, Thin-Walled Structures, 82: 33-45. 


