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ABSTRACT 

In thin-walled steel members, the complexity of the interaction between the buckling of the plates and the 

buckling of the member, combined with the reduction of steel properties with increasing temperature, 

hinders the development of simple accurate analytical models. As a result, analytical design methods tend 

to be overly conservative for simple situations, and inexistent for more complex situations such as 

temperature gradients and systems-level response, leading to unreliable fire design methods and affecting 

the attractiveness of these structures that are designed with optimization in mind. Meanwhile, data-based 

approaches using Machine Learning (ML) techniques have allowed overcoming complex nonlinear 

problems in various engineering disciplines. ML may provide fast models surpassing existing analytical 

methods and achieving accuracy similar to Finite Element-based solutions at much lower computational 

cost. While the development of ML models requires sophisticated modelling and large datasets, which may 

not always be available, once a ML model is developed its application to practical design situations within 

the limits of its validity is straightforward. This paper investigates opportunities from application of ML 

methods to the problem of thin-walled steel members in fire, including critical comparison of benefits and 

capabilities between ML methods and existing analytical approaches. With a dataset of 2304 data points 

for columns and 24516 for beams, the paper shows that ML models can outperform current state-of-the-art 

analytical models in terms of agreement with high-fidelity shell FE results. 
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1 INTRODUCTION 

Structures made of thin-walled steel members are widely used, from highly optimized portal frames to 

structural systems such as light-steel framing. Their exceptional weight-to-strength ratio provides an 

appealing solution from the cost and material savings point of view. However, these structural members 

are susceptible to local buckling, a failure mode that can greatly reduce the load bearing capacity of the 

members. The added complexity resulting from the interaction between local buckling of the plates at the 

cross-section level and buckling of the member (i.e., flexural buckling and lateral torsional buckling) has 

hindered the development of more economic yet safe analytical design methods, which goes counter to the 

advantage of thin-walled members as a means to optimize design and material use. While analytical 

methods derived from mechanics-based principles and experimental observations are very useful for 

design, they are necessarily based on simplifying assumptions that lead to conservatism. Further improving 

their accuracy requires increasing their level of complexity, for example in the form of additional buckling 

curves for local and/or global buckling, which affects the practicality and makes user mistakes more likely 

for use as design methods.  
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Stemming from possible failure due to local buckling, Finite Element (FE)-based solutions require more 

complex models at higher cost. Traditional beam FE models are unable to capture the effects of local 

buckling thus shell finite models must be used. These complex models are cumbersome to use in a daily 

basis, since not only the calculation cost is much higher but also the modelling part is harder and time-

consuming. Although efforts to enhance the beam FE-based models to include the reduction in capacity 

due to local buckling were developed [1,2] these techniques are still in their infancy.  

Meanwhile, data-based approaches using Machine Learning (ML) techniques have allowed overcoming 

complex nonlinear problems in many engineering disciplines. ML may provide fast models surpassing 

analytical methods and achieving accuracy close to that of FE models at much lower computational cost. 

This has recently led to interest towards their application for the case of structures in fire [3]. 

This paper investigates the development and application of ML techniques for predicting the capacity of 

thin-walled columns and beams at elevated temperatures. To construct the ML models, datasets are 

generated for elevated temperature failure of thin-walled columns and beams using a numerical model with 

shell finite elements in the software SAFIR [4]. Training of artificial neural networks, support vector 

machines and polynomial regression is carried out using established numerical methods. The outputs of the 

ML model are then compared against those from SAFIR and from Eurocode 3 analytical methods. 

2 ANALYTICAL MODELS 

2.1 Effective cross-section 

For slender steel columns under compression, the evaluation of load carry capacity at elevated temperature 

must consider the effect of local buckling. Part 1.5 of Eurocode 3 provides expressions of reduction factors 

for plate buckling resistance under compression, based on the concept of effective width method accounting 

for geometric imperfection and residual stresses [5]. Couto et al. [6] proposed an updated formula to account 

for the local buckling of slender steel members (Class 3 and Class 4) at elevated temperature and replaced 

the use of design yield strength corresponding to the 0.2% proof strength with the yield strength at 2% total 

strain for Class 4.  

The effective width of plates at elevated temperature can be calculated as: 

 𝑏𝑒𝑓𝑓 = 𝜌𝜃 × 𝑏 (1) 

The new expression [6] for a plate reduction factor of internal compression elements is: 

 𝜌𝜃 =
(𝜆𝑝+𝛼𝜃)

𝛽𝜃
−0.055(3+𝜓)

(𝜆𝑝+𝛼𝜃)
2𝛽𝜃

≤ 1.0 (2) 

For outstand compression element it is: 

 𝜌𝜃 =
(𝜆𝑝+𝛼𝜃)

𝛽𝜃
−0.188

(𝜆𝑝+𝛼𝜃)
2𝛽𝜃

≤ 1.0 (3) 

𝜆𝑝 is the non-dimensional slenderness of a plate given by: 

 𝜆𝑝 =
𝑏 𝑡⁄

28.4𝜀√𝑘𝜎
 (4) 

where 𝑘𝜎 is the buckling coefficient of plates, 𝑏 and 𝑡 are the width and thickness of the plates, 𝜓 is the 

stress ratio between two ends. Coefficients 𝛼𝜃 and 𝛽𝜃 are given in Table 2 of the paper by Couto et al. [6] 

for internal compression elements (web) and outstand compression elements (flanges). 𝜀 is calculated as: 

 𝜀 = √
235

𝑓𝑦
√

𝐸

210000
 in which 𝑓𝑦 and 𝐸 in Mpa (5) 

According to the current Eurocode 3 Part 1-2, the effective section is determined for 𝛼𝜃 = 0 and 𝛽𝜃 = 1. 



2.2 Buckling of columns and beams 

Once the effective width of the plates is calculated and the effective properties of the section determined, 

the load-carrying capacity of the members can be evaluated by making allowance for the flexural buckling 

or lateral-torsional buckling in the columns and beams using equations (6a) or (6b), respectively.  

 𝑁b,fi,t,Rd = 𝜒fi ∙ 𝐴eff ∙ 𝑘y,θ ∙ 𝑓y ∕ 𝛾M,fi (6a) 

 𝑀b,fi,t,Rd = 𝜒LT,fi ∙ 𝑊eff ∙ 𝑘y,θ ∙ 𝑓y ∕ 𝛾M,fi (6b) 

where 𝐴eff and 𝑊eff are the effective section area and effective sections modulus,  𝑘θ is the reduction factor 

for the yield strength at elevated temperatures, 𝑓y is the yield strength, 𝛾M,fi is the safety factor taken as 1.0. 

According to the present version of the Eurocode 3 Part 1-2, for Class 4 sections, 𝑘y,θ is taken as the 

reduction factor for the 0.2% proof strength of steel at elevated temperatures (𝑘p,0.2,θ). 

For the columns, the buckling reduction factor for flexural buckling 𝜒𝑓𝑖 is calculated as: 

 𝜒𝑓𝑖 =
1

𝜙𝜃+√𝜙𝜃
2−𝜆𝜃

2
   and   𝜒𝑓𝑖 ≤ 1.0 (7) 

𝜆𝜃 is the non-dimensional slenderness at elevated temperature and 𝜙𝜃is calculated as: 

 𝜙𝜃 = 0.5 [1 + 𝛼(𝜆𝜃 − 𝜆0) + 𝜆𝜃

2
] (8) 

𝜆0 = 0 and with 𝛼 is the imperfection factor calculated as: 

 𝛼 = 0.65𝜀 = 0.65√235 𝑓𝑦⁄  (9) 

The non-dimensional slenderness at elevated temperature 𝜆𝜃 is calculated as: 

 𝜆𝜃 = √
𝐴𝑒𝑓𝑓𝑓𝑦𝑘𝑦,𝜃

𝑘𝐸,𝜃𝑁𝑐𝑟,20
 (10) 

where 𝑘𝐸,𝜃 is the reduction factor for Young’s modulus at elevated temperatures, and 𝑁𝑐𝑟,20 is the elastic 

critical capacity at ambient temperature. 

For beams, the same procedure given by equations (7)-(10) is used to calculate the lateral-torsional buckling 

reduction factor 𝜒LT,fi with the subscript “LT” added to the parameters. However, 𝛼LT and 𝜆0 take different 

values for beams with Class 4 cross-sections in the new generation of the Eurocode 3 Part 1-2, with the 

values proposed given by Couto et al. [7]. A modification factor “𝑓” is also included to take into account 

the non-uniform bending diagrams as detailed in [8], and the non-dimensional slenderness is calculated as 

a function of the section resistance to major-axis bending and the elastic critical moment. 

3 NUMERICAL MODEL AND DATASET 

3.1 Finite element model 

Numerical modelling was used to analyse members made of I-shaped slender cross-sections subjected to 

axial compression and major-axis bending at elevated temperatures. The numerical models were built using 

shell elements in the nonlinear finite element software SAFIR [4]. Columns and beams with different plate 

slenderness, lengths and, for the case of beams, end-moment ratios were modelled. The structural members 

were uniformly heated on four sides. Pinned or fixed support conditions, on the columns, and fork-supports 

on the beams were considered. A sensitivity analysis on the mesh size was conducted to have a sufficiently 

refined mesh while preserving an appropriate computational cost. 

The constitutive model included in the simulations followed the non-linear stress-strain relationship and 

reduction factors defined in Eurocode 3 Part 1-2 [9]. Steels with grades S235, S355, and S460 at ambient 

temperature were used in the numerical models. Young’s modulus of elasticity at ambient temperature was 

taken as 210 GPa and Poisson's ratio as 0.30.  



  

Both geometric imperfections and material imperfections, in the form of residual stresses, were included in 

the models. For global imperfection, the amplitude followed the design recommendation, i.e. L/1000, where 

L is the length of the member. For local imperfection, the amplitude was calculated as 80% of the geometric 

fabrication tolerances [10]. The global imperfection and local imperfection were combined following the 

recommendation of Annex C in Part 1-5 of Eurocode 3 [5]. In accordance with the recommendations of 

this Annex, the full amplitude was considered for the leading imperfection while that of the accompanying 

imperfections was reduced to 70%. For the residual stresses, the pattern included in the models followed 

the one for hot-rolled columns and welded beams [10]. 

For columns, two rigid 100 mm thick endplates were added at both ends of the column. The load was axially 

applied on the edge of the vertical plate on the top with no eccentricity such that the load can be distributed 

evenly on the web and flange. The displacements of two rigid extensions were constrained except for the 

vertical direction on the top (Uy) which was left free to allow free thermal expansion. The rotations of two 

rigid extensions were either fixed or pinned in Rx, Ry, and Rz directions (see Figure 1). 

For beams, fork-supports were used at both ends of the structural member to prevent the displacements in 

x-direction and y-direction. To prevent rigid body movement, the displacements in z-direction were 

constrained at mid-span. The loading was applied by nodal forces to produce end-moments at both ends. 

Additionally, end-plates were included with a thickness equal to 10 times the web thickness to ensure 

correct load distribution. 

The ultimate load-bearing capacity of the columns was calculated with SAFIR considering steady-state 

conditions i.e., by first uniformly increasing the temperature in the section up to the target value and then 

progressively loading the members until failure was reached. 

An example of the collapse shape of a IPE500 column and the corresponding boundary conditions are 

provided in Figure 1. More details about the numerical model can be found in [11,12]. 

 

  

(a) (b) 

Figure 1. Numerical model in SAFIR: (a) shell model for IPE500 column at 300 ℃ and (b) boundary conditions with end 

plates and pinned-fixed supports. 

3.2 Datasets 

Two datasets were defined comprising respectively the column and beam cases. For each dataset, the data 

points were calculated using the numerical model described in the previous section. FE simulations were 

run to failure. The dataset includes 2304 FE simulations for the columns and 24516 for the beams. For the 

latter, the same data were used to develop the design rules for the lateral-torsional buckling of beams with 

slender section [7,8] present in new generation of the Eurocode 3 Part 1-2 and given in Section 2. 

The selection of features was carried out using a procedure that combined prior knowledge about the 

parameters potentially influencing the mechanical response (mechanistic-informed) and a quantitative trial-

and-error approach to find the most suitable combination of features. The process of feature selection dealt 

with both inclusion and exclusion of parameters and their combination, and the best model was selected as 

the one with fewest parameters for a given accuracy. The ranges of values for the input parameters are listed 

in Table 1 and Table 2 for columns and beams, respectively, each defining 9 and 8 features for the ML 

models. Similar features are defined for both cases but with a different order because the ML models 



originate from two different studies by the authors [11,12]. The order of the features has no influence in the 

performance of the models. 

Table 1. Input parameters for the ML models and for the unseen experimental dataset – columns. 

Notation Feature Input values Numerical dataset Unseen experiment dataset 

Min. Max. Min. Max. 

 

𝑥1 ℎ𝑤 𝑡𝑤⁄  31 52 11.2 50 

𝑥2 𝑏𝑓 2⁄ 𝑡𝑓 4.6 8.2 6.25 15.3 

𝑥3 𝑑 𝑏𝑓⁄  0.56 2.34 0.56 2 

𝑥4 𝑡𝑤 𝑡𝑓⁄  0.56 1 0.625 1 

𝑥5 𝑓𝑦𝑤𝑒𝑏
𝐸⁄  (235/𝐸) (460/𝐸) (321.9/𝐸) (538.1/𝐸) 

𝑥6 𝑓𝑦𝑓𝑙𝑎𝑛𝑔𝑒
𝐸⁄  (235/𝐸) (460/𝐸) (306.3/𝐸) (538.1/𝐸) 

𝑥7 𝐿 𝑏𝑓⁄  6.7 30 6.8 18.4 

𝑥8 (𝑁𝑝𝑙,20 𝑁𝑐𝑟,20⁄ )
0.5

 0.17 2.01 0.17 1.05 

𝑥9 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 300°𝐶 800°𝐶 400°C 700°C 

Table 2. Input parameters/features of dataset used for the ML models training – beams. 

Notation Feature Input values Min. Max. 

 

𝑥1 ℎ𝑤 𝑡𝑤⁄  75 200 

𝑥2 𝑏 𝑡𝑓⁄  6 50 

𝑥3 ℎ𝑤 𝑏⁄  1.8 3.33 

𝑥4 𝑡𝑤 𝑡𝑓⁄  0.16 0.8 

𝑥5 𝑓𝑦 𝐸⁄  (235/𝐸) (460/𝐸) 

𝑥6 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 300°𝐶 700°𝐶 

𝑥7 (𝑀𝑝𝑙,20 𝑀𝑐𝑟,20⁄ )
0.5

 0.097 2.738 

𝑥8 𝜓 -1 1 

 

In these tables, the ℎ𝑤 𝑡𝑤⁄  and 𝑏𝑓 2𝑡𝑓⁄  are the adimensional web and flange dimensions – note that for beam 

cases 𝑏𝑓 𝑡𝑓⁄  was considered instead, 𝐹𝑦𝑤𝑒𝑏
𝐸⁄ , 𝐹𝑦𝑓𝑙𝑎𝑛𝑔𝑒

𝐸⁄  are the adimensional web and flange yield 

strengths considered for columns and 𝑓𝑦 𝐸⁄  is the adimensional yield strength for beams. The 𝐿 is member 

length, 𝑁𝑝𝑙,20 and 𝑀𝑝𝑙,20 are the section plastic capacity for the column and beam, 𝑁𝑐𝑟,20 and 𝑀𝑐𝑟,20 are 

their elastic critical load at ambient temperature and 𝜓 is the ratio between end-moments applied to beams. 

The range of feature values considered in the dataset was chosen to cover a common range of design 

parameters for slender section steel columns and beams in building structures.  

The output was defined as 𝑦 = 𝑁𝑢,𝑇 𝑁𝑝𝑙,20⁄  with 𝑁𝑢,𝑇 being the ultimate capacity of a column or 𝑦 =

𝑀𝑢,𝑇 𝑀𝑝𝑙,20⁄  with 𝑀𝑢,𝑇 being the ultimate capacity of a beam. 

For columns, in addition to the 2304 numerical data points, 16 experiments on steel columns at elevated 

temperature were identified from the literature, on axially compressed stud columns with Class 4 cross-

sections [13] and on pin-supported steel columns with HEA 100 cross-sections [14]. These experiments 

were used to test a posteriori the ability of the trained ML models to predict the outcome of the experiments, 

where the experimental data had not been used in the construction of the ML models. In particular,  

Table 1 shows that the values of the features for these 16 experimental data points (column “unseen 

experiment dataset”) did not always fit within the boundaries of the feature values used for training and 

testing the ML models. Consideration of these experiments therefore enables exploring the limits of the 

data-based approach when extrapolating outside the range of parameters “seen” by the model.  

For the column cases, the 2304 data points were randomly divided into two groups with a ratio of 9:1, thus 

2073 data points were used for training the ML models and 231 data points were used for testing the ML 

models. For the beam cases, the 24516 samples were divided on a proportion of 7:3, thus 17161 cases were 

considered for training and 7355 cases for testing. 
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4 MACHINE LEARNING MODELS 

4.1 Artificial Neural Networks 

The artificial neural network (ANN) is a mathematical model that can be described as a group of neurons 

arranged in layers and their connections forming a network. The ANN can map a certain range of input 

values (features) to a specific target value (result). The most used type of ANN is the Multilayer Perceptron 

(MLP), with an input layer, one or more hidden layers, and an output layer. Each neuron of a certain layer 

is only connected to the neurons in the next layer, and may include an extra, independent, value called the 

bias. The output of each neuron 𝑗 can be calculated as: 

 𝑜𝑢𝑡𝑝𝑢𝑡𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1 ) (11) 

where 𝑜𝑢𝑡𝑝𝑢𝑡𝑗 is the output of the layer, 𝑤𝑖𝑗 are the weight coefficients, 𝑥𝑖 are the input values, or features, 

and 𝑏𝑗 is the bias values. The 𝑓(𝑥) is the so-called transfer or activation function. 

Then, the training of ANN is achieved by exposing the network to a set of examples (input patterns) with 

known outputs (target output). The weights of the internal connections, and the bias values of the neurons, 

are adjusted to minimize errors between the network output and target output.  

Two implementations of the ANN were considered in this study, the one available in the scikit-learn [15] 

was used for both column and beam cases and pyrenn [16] was also considered for the beam case. Regarding 

the loss function, the scikit-learn toolkit implements the square error loss function in the MLP for 

regression, while the pyrenn toolkit used the mean square error loss function.  

The hyperparameters were determined by the functionality of a randomized search with the cross-validation 

of 25 and 5 folds using the scikit-learn toolkit for column and beam cases, respectively. The results show 

that the optimal hidden layer size was 8 with the applied weight optimizer ‘lbfgs’. For the beam model, 

using the ‘adam’ optimizer the hidden layer size was 64. Using the Levenberg-Marquardt (LM) the hidden 

layer was reduced to 16 neurons and since no cross-validation was available in pyrenn the network 

architecture was manually fine-tuned. 

4.2 Support Vector Machines Regression 

SVR is developed as an extension of the support vector machine (SVM), which aims to find a hyperplane 

in an n-dimensional space (n is the number of features, i.e. input parameters) that classifies the training 

datasets in different classes. While the objective of SVM is to find a hyperplane that has the maximum 

margins (±𝜀), the extension SVR aims to find a flat hyperplane with margins (±𝜀) that accept the data 

points within or on the margins while rejecting the data points outside the margins. 

The hyperplane can be written in Equation (12) for linear SVR: 

 𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏 (12) 

in which 𝑥𝑖 and 𝑦𝑖 are the ith input and output in the training dataset,  𝑤 is the weight matrix, b is the bias.  

For nonlinear SVR, the hyperplane can be written as: 

 𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 (13) 

in which 𝜑(𝑥𝑖) is the nonlinear kernel function that maps the input vectors to a higher dimension space. 

The deviation of points within the margins (±𝜀) is zero. The deviation of points outside the margins (±𝜀) 

is the distance of these points to the margins (𝜉𝑖 and 𝜉𝑖 ). The loss function of SVR is written as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖 )𝑛

𝑖=1  (14) 

The constraints are: 

 𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖  

 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖  (15) 

 𝜉𝑖, 𝜉𝑖 ≥ 0  



in which 
1

2
‖𝑤‖2 is the regularization term added to seek the flattest hyperplane with a small weight. C is a 

trade-off between the accepted tolerance of deviation 𝜀 and the flatness of the solution. 

The samples for training and testing are the same as for the ANN. Grid search is applied to tune the 

hyperparameters. The following values are used for the hyperparameters for the beam: ‘rbf’ kernel, 

C=1000, gamma=0.049, and 𝜀 = 0.05. The following values are used for the columns: ‘rbf’ kernel, C=82, 

gamma=0.263, and 𝜀 = 0.01.  

4.3 Polynomial regression 

The general form for polynomial regression is written as: 

 𝑌 = 𝑋𝜔 + 𝜀 (16) 

in which 𝑌 is the vector of responses, 𝑋 is the feature matrix, 𝜔 is the coefficient and 𝜀 is the bias. The 

polynomial regression extends the inputs of the linear model, which is obtained by raising the initial inputs 

to a power. The new inputs are created with degrees less than or equal to the specific order. The new feature 

matrix includes 1) bias; 2) converting the initial inputs to their higher-order terms for each degree; 3) 

combination of all pairs of initial inputs. For instance, if there are two inputs, [𝑥1,𝑥2], a degree-2 polynomial 

expansion would produce a new feature matrix [1,𝑥1,𝑥2,𝑥1
2,𝑥1𝑥2, 𝑥2

2].  

Models with higher degrees may closely fit most of the data in the training dataset, but possibly at the cost 

of over-fitting resulting in a larger error on the testing dataset. To prevent over-fitting in polynomial 

regression, ridge regression is applied to fit the polynomial feature matrix. The ridge regression adds a 

regularization term to the sum of squares of residuals. The loss function of ridge regression is written as: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ∑ ‖𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑤𝑗‖𝑚
𝑗=0

2𝑛
𝑖=1 + 𝜆 ∑ ‖𝑤𝑗‖

2𝑚
𝑗=0 (𝜆 > 0) (17) 

in which the 𝑦𝑖 is the known observation, ∑ 𝑥𝑖𝑗𝑤𝑗
𝑚
𝑗=0  is the predicted value, and 𝜆 is the tuning parameter 

which controls the complexity of the model. As 𝜆 grows larger, the ridge regression effectively shrinks 

coefficient 𝑤𝑗 to be 0 and selects a small subset of features to build the model, which prevents training a 

more complex model and thus avoid over-fitting. 

For the column, a degree 2 polynomial was found to predict the resistance of columns within the range of 

features provided in Table 1 of the numerical dataset. The coefficients of the degree 2 polynomial model 

are given in [11]. This model implemented in a datasheet can provide an almost-immediate prediction of 

the elevated temperature capacity for slender steel columns, within the range of features considered. For 

the beam, the model of degree 6 shows the best performance for both training and testing [12].  

5 RESULTS AND DISCUSSION 

To quantify the performance of the different models, the coefficient of determination R² value was evaluated 

for the models against the training and testing dataset and the unseen experimental data. The R² measures 

how well the observations are replicated by a model and a R² close to 1 is preferred. Table 3 gives the 

results for the SVR, ANN, and PR models for columns and beams respectively. Predictions by the analytical 

model described in Section 2 are also included. 

 Table 3. Performance of the ML models and the analytical model. 

Regressor (R²) Columns Beams 

 Train Test Unseen Experiment Train Test 

SVR 0.998 0.996 -0.212 0.987 0.987 

ANN 0.990 0.990 0.891 0.999 0.999 

PR 0.980 0.977 0.914 0.981 0.981 

EN1993-1-2:2005 0.928 0.829 

EN 1993-1-2 New Gen. 0.956 0.963 

 

Figure 2 (a)-(d) plots the predicted capacity 𝑁𝑢,𝑇 𝑁𝑝𝑙,20⁄  using SVR, ANN, PR, and the analytical models 

against the numerical estimations from the shell finite element model in SAFIR for the columns. For the 



  

training and testing dataset, the results from SVR, ANN, and PR agree better with the capacity evaluated 

by SAFIR than the analytical model. The ANN and PR models are also able to predict the capacity in the 

unseen experimental datasets with good agreement. 
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(c) (d) 

Figure 2. Predicted capacity 𝑁𝑢,𝑇 𝑁𝑝𝑙,20⁄  for slender steel columns at elevated temperature: Comparison between SAFIR finite 

element model and (a) SVR; (b) ANN; (c) PR; (d) Analytical model. Training/testing performed based on 2304 data points. 

“Experiment” refers to 16 experimental data points not used in the construction of the ML models. 

  

(a) (b) 

Figure 3. Comparison between numerical results (FEM) and (a) machine learning models or (b) analytical models for columns 

with cross section IPE A 300 (S460) at 500 °𝐶. 



In fact, when used to predict the outcome of the experiments from [13,14], which were not used to construct 

the models, the PR is the most accurate with 𝑅2 of 0.914, followed by ANN, and the analytical model. The 

SVR model fails to capture the experimental data. The reason is the SVR is sensitive to the range of web 

slenderness and flange slenderness. Looking at the web and flange slenderness of the training, testing, and 

experimental data points (Table 1), reveals that the values of these features for the experimental data points 

fall outside of the range considered in the training and testing data points. When the web slenderness and 

flange slenderness are beyond the range of the trained model, the SVR fails to accurately extrapolate the 

outputs and the predictions of 𝑁𝑢,𝑇 𝑁𝑝𝑙,20⁄  are approximately constant at 0.3. This results from the high 

degree of nonlinearity of the SVR model. Attempts to improve the predictions with the SVR outside of the 

range of the parameters (to fit with the experimental data) were made, including by using a linear SVR or 

addressing the overfitting. However, any improvement of the performance against the experimental dataset 

was at the cost of a sensible reduction in performance against the training and testing datasets. Therefore, 

it was concluded that the nonlinear SVR model can provide high performance in the range of the training 

parameters, but should not be extrapolated outside this range. 

For a different visualization of the results, Figure 3 shows the comparison of the different models for 

columns with IPE A 300 in S460 steel at 500 °𝐶, as well as the numerical results obtained with the finite 

element model described in Section 2, considering different lengths of the column and different support 

conditions. In this figure, it is possible to observe the good correlation between the ML models and those 

obtained numerically. The shape of the curve obtained with the ANN might be explained by the number of 

lengths considered in the training set for the columns, by increasing this number a smoother curve would 

likely be obtained, as it is the case for the beams that are presented next. 

For the beam cases, Figure 4 (a)-(d) plot the predicted capacity 𝑀𝑢,𝑇 𝑀𝑝𝑙,20⁄  using SVR, ANN, PR, and the 

analytical models against the numerical estimations from the shell finite element model in SAFIR. As for 

the columns, the different ML models for beams with slender section outperform the accuracy of the 

analytical methods defined in the future version of the EN 1993-1-2 which, in turn, provides already a better 

accuracy over its present version. The artificial neural network developed with pyrenn has reached 𝑅2 

scores of 0.999 on both the training and testing datasets thus provide an excellent choice to predict the 

capacity of thin-walled beams. 

Figures 5 and 6 shows the comparison of different models for beams with cross-sections I450×4+150×12 

and I450×4+200×10, made of S235 and S355 steels and subjected to a constant bending diagram (𝜓 = 1) 

and a triangular bending diagram (𝜓 = 0), respectively . The beams were calculated for 450 °𝐶 using the 

finite element model described in Section 2. For both sections, it is possible to observe the good correlation 

between the results predicted by the ML models and the results calculated numerically using the FEM. 

Regarding the analytical methods while it is noticeable the improvements of the new generation of EN1993-

1-2 over the present version of the design code, as expected, both these methods present lower accuracy 

when compared against the ML models. 
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Figure 4. Predicted capacity 𝑀𝑢,𝑇 𝑀𝑝𝑙,20⁄  for slender steel beams at elevated temperature: Comparison between SAFIR finite 

element model and (a) SVR; (b) ANN; (c) PR; (d) Analytical models. 

 

.   
(a) (b) 

Figure 5. Comparison between numerical results (FEM) and (a) machine learning models or (b) analytical models for beams 

with cross section I450×4+150×12 (S235) at 450 °𝐶 and constant bending moment distribution (𝜓 = 1). 



  

(a) (b) 

Figure 6. Comparison between numerical results (FEM) and (a) machine learning models or (b) analytical models for beams 

with cross section I450×4+200×10 (S355) at 450 °𝐶 and triangular bending moment distribution (𝜓 = 0). 

6 CONCLUSION 

This study investigated the potential of Machine Learning (ML) models to capture the capacity at elevated 

temperatures of steel members with slender sections which exhibit failure by local buckling and/or global 

buckling. A numerical study based on validated nonlinear FEM using shell elements was conducted to build 

a dataset of 2304 data points for columns and 24516 for beams with a range of cross-sections, member 

length, temperature, yield strength, and boundary conditions. The dataset was used to train and test ML 

models to predict the elevated temperature capacity of beams and columns. Three types of ML models were 

applied to the beam and column datasets separately, namely based on artificial neural network (ANN), 

support vector regression (SVR) and polynomial regression (PR).  

For both the beams and columns, the ML models can fit the results of the shell FE models more closely 

than the state-of-the-art analytical methods to be included in the next generation of the Eurocodes. For 

columns, the ML models can predict the resistance at elevated temperature, for both the training and testing 

dataset, with a 𝑅2 greater than 0.990 for SVR and ANN, and greater than 0.977 for PR. For beams, a 𝑅2 

greater than 0.981 is obtained for the PR, 0.987 for SVR and 0.999 for the ANN.  

For the columns, the PR and ANN models were also able to capture experimental data not used to train the 

model and with inputs outside the range of the numerical training dataset with a 𝑅2 of 0.914 and 0.891, 

respectively. The SVR model, while providing the best accuracy against the training and testing datasets, 

did not provide an acceptable agreement against the experimental data and should thus not be used for 

inputs outside of the range considered to build the model. It is expected that the accuracy against test data 

could be further improved by extending the training dataset for the ML models.  

In addition, the representation of results in the form of buckling curves illustrates the ability of the ML 

models to capture the behaviour of the steel members across a large range of slenderness. Generally the 

ML models agreed better with the FE data than the state-of-the-art analytical models.  

This work shows that ML models can accurately predict the resistance of both columns and beams under 

uniform heating while also being computationally efficient. Large numerical database that were developed 

as background to the development of analytical methods can be revisited to train ML models, following the 

procedure described in this paper. In future works, more complex configurations such as structural 

assemblies or non-uniform fire exposures will be explored. 
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