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ABSTRACT 

The resistance of thin-walled steel beams in fire is governed by a complex interaction between the buckling 

of the plates and the lateral-torsional buckling (LTB) of the member, combined with the temperature-

induced reduction of steel properties. Besides, in many applications, steel beams are subjected to non-

uniform thermal exposure which creates temperature gradients in the section. There is a lack of analytical 

design methods to capture the effects of temperature gradients on the structural response, which leads to 

overly conservative assumptions thwarting optimization efforts. Meanwhile, data-based Machine Learning 

(ML) methods have been widely recognized for their ability to learn from complex dataset and generate 

predictive models. This paper describes the development of four different ML models for thin-walled steel 

beams subjected to thermal gradients. A parametric heat transfer analysis is first conducted to characterize 

the thermal gradients that develop under three-sided fire exposure. Nonlinear finite element simulations 

with shells are then used to generate the resistance dataset. The ML models, trained using physically defined 

features, show significant improvement in predictive capacity over the Eurocode methods. The ML-based 

models can be used to improve existing design methods for non-uniform temperature distributions. 
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1 INTRODUCTION 

This paper investigates opportunities from application of ML methods to the problem of thin-walled steel 

beams in fire subjected to non-uniform temperature gradients. Recently, ML models have been successfully 

developed for thin-walled members [1–3], but the effect of thermal-gradients has not been yet accounted 

for. While the development of ML models requires sophisticated modelling and large datasets, which may 

not be always available, once a ML model is developed its application to practical design situations within 

the limits of its validity is straightforward. 

Existing analytical methods have undeniable advantages, such as confidence from accrued experience and 

link to physical key parameters, which allow calibration for target reliability and interpretability (“white-

box”) for generic applicability. Yet analytical methods have failed so far to solve some complex issues in 

fire, including those arising from the effects of temperature gradient. In particular, there are few studies 

devoted to investigation of the effect of non-uniform temperature gradients in beams [4–7]. In addition, the 

inclusion of novel developments into design standards is a lengthy process, for example the present version 

of Eurocode 3 Part 1-2 was issued in 2005 [8]. For these reasons, innovations are held back as there is no 
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legal basis for practitioners to apply recent methods with a negative impact on the industry. This motivates 

exploration of ML methods.  

The approach in this study starts by deriving a comprehensive dataset where the samples were obtained 

from parametric analysis using nonlinear Finite Element (FE) with shell elements and capture the different 

structural failure modes (local buckling and LTB). The FE model includes non-uniform temperature 

distributions resulting from thermal gradients, based on an assessment of the temperature distributions in 

the flanges and webs occurring from three-side thermal exposure of protected beams. Then, ML-based 

models are derived for predicting the capacity of these thin-walled steel members at elevated temperature. 

The ML models include artificial neural networks (ANN), support vector regression (SVR), random forests 

(RF) and polynomial regression (PR). An overview of the existing analytical design rules in the Eurocode 

3 Part 1-2 [8], and improved proposals [9], for predicting the capacity of these members at elevated 

temperature is provided with discussion of the input parameters (or features). Given that these analytical 

methods are based on a uniform temperature distribution in the section, the effect of different assumptions 

regarding their applicability to non-uniform temperature distributions is also discussed.  

2 CURRENT ANALYTICAL MODELS FOR THIN-WALLED BEAMS IN FIRE 

2.1 Effective cross-section 

For beams with thin-walled sections, the evaluation of load carry capacity at elevated temperature must 

consider the effect of local buckling. Part 1.5 of Eurocode 3 provides expressions of reduction factors for 

plate buckling resistance under compression, based on the concept of effective width method accounting 

for geometric imperfection and residual stresses [10]. Couto et al. [11] proposed an updated formula to 

account for the local buckling of slender steel members (Class 3 and Class 4) at elevated temperature and 

replaced the use of design yield strength corresponding to the 0.2% proof strength with the yield strength 

at 2% total strain for Class 4.  

The effective width of plates at elevated temperature can be calculated as: 

 𝑏𝑒𝑓𝑓 = 𝜌𝜃 × 𝑏 (1) 

The new expression [11] for a plate reduction factor of internal compression elements (e.g., web) is: 

 𝜌𝜃 =
(𝜆𝑝+𝛼𝜃)

𝛽𝜃
−0.055(3+𝜓)

(𝜆𝑝+𝛼𝜃)
2𝛽𝜃

≤ 1.0 (2) 

For outstand compression elements (e.g., flanges) it is: 

 𝜌𝜃 =
(𝜆𝑝+𝛼𝜃)

𝛽𝜃
−0.188

(𝜆𝑝+𝛼𝜃)
2𝛽𝜃

≤ 1.0 (3) 

𝜆𝑝 is the non-dimensional slenderness of a plate given by: 

 𝜆𝑝 =
𝑏 𝑡⁄

28.4𝜀√𝑘𝜎
 (4) 

where 𝑘𝜎 is the buckling coefficient of plates, 𝑏 and 𝑡 are the width and thickness of the plates, 𝜓 is the 

stress ratio between two ends. Coefficients 𝛼𝜃 and 𝛽𝜃 are given in Table 2 in the reference [11] for internal 

compression elements and outstand compression elements. 𝜀 is calculated as: 

 𝜀 = √
235

𝑓𝑦
√

𝐸

210000
 in which 𝑓𝑦 and 𝐸 in Mpa (5) 

According to the current Eurocode 3 Part 1-2 [8], the effective section is calculated for 𝛼𝜃 = 0 and 𝛽𝜃 = 1. 



2.2 Lateral-torsional buckling 

Once the effective width of the plates is calculated and the effective properties of the section determined, 

the load-carrying capacity of the beam is evaluated by making allowance for lateral-torsional buckling 

using equation (6) according to Part 1-2 of Eurocode 3 [8]. 

 𝑀b,fi,t,Rd = 𝜒LT,fi ∙ 𝑀𝑓𝑖,𝑅𝑑 𝛾M,fi⁄ = 𝜒LT,fi ∙ 𝑊eff ∙ 𝑘θ ∙ 𝑓y 𝛾M,fi⁄  (6) 

where 𝑊eff is the effective section modulus calculated using the effective width of the plates, 𝑘θ is the 

reduction factor for the yield strength at elevated temperatures, 𝑓y is the yield strength, 𝛾M,fi is the safety 

factor taken as 1.0. According to the present version of the Eurocode 3 Part 1-2, for Class 4 sections, 𝑘θ is 

taken as the reduction factor for the 0.2% proof strength of steel at elevated temperatures (𝑘p,0.2,θ). 

The lateral-torsional buckling reduction factor for flexural buckling 𝜒𝐿𝑇,𝑓𝑖 is calculated as: 

 𝜒𝐿𝑇,𝑓𝑖 =
1

𝜙𝐿𝑇,𝜃 +√𝜙𝐿𝑇,𝜃 
2 −𝜆̅𝐿𝑇,𝜃

2
   and   𝜒𝐿𝑇,𝑓𝑖 ≤ 1.0 (7) 

𝜆̅𝐿𝑇,𝜃 is the non-dimensional slenderness at elevated temperature and 𝜙𝐿𝑇,𝜃 is calculated as: 

 𝜙𝐿𝑇,𝜃 = 0.5[1 + 𝛼𝐿𝑇𝜆̅𝐿𝑇,𝜃 + 𝜆̅𝐿𝑇,𝜃
2 ] (8) 

and 𝛼𝐿𝑇 is the imperfection factor calculated as 𝛼𝐿𝑇 = 0.65𝜀 = 0.65√235 𝑓𝑦⁄  . The non-dimensional 

slenderness at elevated temperature 𝜆𝜃 is calculated as: 

 𝜆̅𝐿𝑇,𝜃 = √
𝑊eff∙𝑘θ∙

𝑓y

𝛾𝑀,𝑓𝑖

𝑘𝐸,𝜃𝑀𝑐𝑟,20
 (9) 

where 𝑘𝐸,𝜃 is the reduction factor for Young’s modulus at elevated temperatures, and 𝑀𝑐𝑟,20 is the elastic 

critical capacity at ambient temperature which is based on the full section. 

2.3 New generation of Eurocode 3 Part 1-2 

In the new generation of Eurocode 3 Part 1-2 (EN 1993-1-2 New Generation) [9], the overall capacity of 

laterally unrestrained beams with slender cross-sections is calculated following the same procedure 

presented in the previous section, except that the reduction factor 𝜒𝐿𝑇,𝑓𝑖 calculated using equation (7) is 

determined by replacing 𝜙𝐿𝑇,𝜃 in equation (8) with the 𝜙𝐿𝑇,𝜃,NG  calculated according to equation (11), 

 𝜙𝐿𝑇,𝜃,NG = 0.5[1 + 𝛼𝐿𝑇,NG(𝜆̅𝐿𝑇,𝜃 − 0.2) + 𝜆̅𝐿𝑇,𝜃
2 ] (10) 

where the values of the imperfection factor 𝛼𝐿𝑇,NG depend on the limits of the Effective Section Factor 

(ESF), defining three different LTB design curves named L1, L2 and L3. The ESF is the ratio between the 

effective modulus (𝑊eff,𝑦) and the elastic modulus (𝑊el,𝑦) of the cross-section and captures the role of the 

local buckling on the lateral-torsional buckling resistance of the beams at elevated temperature [12]. The 

𝛼𝐿𝑇,NG is 1.25𝜀, 1.0𝜀 and 0.75𝜀, according to the limits,
𝑊eff,𝑦

𝑊el,𝑦
> 0.9, 0.8 <

𝑊eff,𝑦

𝑊el,𝑦
≤ 0.9 and 

𝑊eff,𝑦

𝑊el,𝑦
≤ 0.8, 

respectively, defining the curves L1, L2 and L3. 

The model discussed here does not incorporate the effect of non-uniform temperatures. The Eurocode 3 

Part 1-2 specifies that (clause 4.2.3.4(3)) conservatively, the temperature θ in Eq. (6) can be assumed to be 

equal to the maximum temperature. Further discussion on this aspect is provided in Section 6. 

3 ANALYSIS OF NON-UNIFORM TEMPERATURE DISTRIBUTION IN THE SECTIONS 

In many applications, steel beams will be subjected to non-uniform thermal exposure resulting in 

temperature gradients in the section. Here, heat transfer analyses with the finite element method (FEM) is 

used to analyze the temperature distribution in steel cross-sections heated by the ISO 834 fire on three sides. 



  

The fourth side of the steel profile is either in contact with a concrete slab, or with air at ambient 

temperature. The parametric thermal analyses are conducted in SAFIR [13] considering a range of section 

dimensions, insulation thickness, and the presence of the slab. The insulation is a sprayed material with a 

conductivity of 0.4 W/mK, specific heat of 900 J/kgK, specific mass of 40 kg/m3, water content of 1 kg/m3, 

and emissivity of 0.8. Figure 1 shows the temperature distribution in two steel profiles protected with 

12.7 mm of insulation after 30 minutes of exposure to the ISO 834 fire. The analyses determine the 

temperature evolution in each node of the section, which is then averaged into one (transient) temperature 

for each plate of the cross-section. The non-uniform temperature distribution is then defined through 2 

parameters: (i) the temperature of the lower flange exposed to the fire, 𝜃𝑓𝑙,ℎ𝑜𝑡, and (ii) the temperature of 

the unexposed upper flange, 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑. The temperature of the web, 𝜃𝑤𝑒𝑏, is also examined and is related to 

the flange temperatures. The study aims at evaluating the difference in the average temperatures between 

the flanges, 𝜃𝑓𝑙,ℎ𝑜𝑡 − 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑.  

 

 

 

 

  

 

(a) IPE 300 (b) Section 450×3.2+150×5  

Figure 1. Temperature distribution in protected steel beams subjected to ISO 834 fire exposure on three sides. 

 

A sample of results are plotted in Figure 2. This plot shows, for fourteen cases, the average temperature in 

each of the plate after 30 min and 60 min of exposure, respectively. Cases 7 to 12 do not have a slab. It is 

found that the temperature of the web (𝜃𝑤𝑒𝑏) is consistently very close to the temperature of the lower 

flange (𝜃𝑓𝑙,ℎ𝑜𝑡). The 𝜃𝑤𝑒𝑏 will thus be assumed as the same as 𝜃𝑓𝑙,ℎ𝑜𝑡. The difference between the flange 

temperatures increases when a concrete slab is present. The difference is also larger for the thin-walled 

section than for compact hot-rolled sections. A reasonable estimate of the temperature gradient between the 

flanges is found as 𝜃𝑓𝑙,ℎ𝑜𝑡 − 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑 = 150 °𝐶 for profiles without slab and 𝜃𝑓𝑙,ℎ𝑜𝑡 − 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑 = 250 °𝐶 for 

profiles with a concrete slab. Based on these analyses, four temperature distribution cases will be considered 

for constructing the numerical database for elevated temperature resistance of the steel beams, namely 

(𝜃𝑓𝑙,ℎ𝑜𝑡; 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑) equal to (650 °𝐶; 500 °𝐶), (650 °𝐶; 400 °𝐶), (550 °𝐶; 400 °𝐶), (550 °𝐶; 300 °𝐶). 
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Figure 2. Calculated temperature distributions at different times of ISO fire exposure. 

4 NUMERICAL MODEL AND DATASET 

4.1 Finite element model 

Numerical modelling was used to analyse beams made of I-shaped slender cross-sections subjected to 

major-axis bending at elevated temperatures. The numerical models were built using shell elements in the 

nonlinear finite element software SAFIR [13]. Beams with different plate slenderness, lengths and non-

uniform thermal gradients were modelled. A sensitivity analysis on the mesh size was conducted to have a 

sufficiently refined mesh while preserving an appropriate computational cost. 

The constitutive model included in the simulations followed the non-linear stress-strain relationship and 

reduction factors defined in Eurocode 3 Part 1-2 [8]. Steels with grades S235 and S355, corresponding to 

yield strength of 235 and 355 MPa at ambient temperature were used in the numerical models. Young’s 

modulus of elasticity at ambient temperature was taken as 210 GPa and Poisson's ratio as 0.30.  

Both geometric imperfections (global and local) and material imperfections, in the form of residual stresses, 

were included in the models. For global imperfection, the amplitude followed the design recommendation, 

i.e. L/1000, where L is the length of the member. For local imperfection, the amplitude was calculated as 

80% of the geometric fabrication tolerances [14]. The global imperfection and local imperfection were 

combined following the recommendation of Annex C in Part 1-5 of Eurocode 3 [10]. In accordance with 

the recommendations of this Annex, the full amplitude was considered for the leading imperfection while 

that of the accompanying imperfections was reduced to 70%. The shape of these imperfections was obtained 

from a linear buckling analysis (LBA), using Ansys [15], following the same modelling assumptions as 

described here. For the residual stresses, the pattern for welded beams [14] was included in the models. 

Fork-supports were used at both ends of the structural member to prevent the displacements in y-direction 

and z-direction. To prevent rigid body movement, the displacements in x-direction were constrained at mid-

span. The loading was applied by nodal forces to produce end-moments at both ends. Additionally, a layer 

of thicker elements was included at the extremities to ensure correct load distribution (see Figure 3) as done 

in [16]. 

The ultimate load-bearing capacity of the beams was calculated with SAFIR considering steady-state 

conditions i.e., by first uniformly increasing the temperature in the section up to the target value and then 

progressively loading the members until failure was reached. 

An example of the collapse shape of a slender beam with 450×3.2+150×5 and the corresponding boundary 

conditions are provided in Figure 3. More details about the numerical model can be found in [14,16]. 
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Figure 3. Collapse shape of beam 450×3.2+150×5 (S235) with L=5.0 m, 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑 = 300℃ and 𝜃𝑓𝑙,ℎ𝑜𝑡 = 550℃.  

4.2 Dataset 

A dataset was defined where the data points were calculated using the numerical model described in the 

previous section. FE simulations were run to failure. The dataset includes 6348 FE simulations.  

The selection of features was carried out using a procedure that combined prior knowledge about the 

parameters potentially influencing the mechanical response (mechanistic-informed) and a quantitative trial-

and-error approach to find the most suitable combination of features. The process of feature selection dealt 

with both inclusion and exclusion of parameters and their combination, and the best model was selected as 

the one with fewest parameters for a given accuracy. The ranges of values for the input parameters are listed 

in Table 1, defining 8 features for the ML models.  

Table 1. Input parameters/features of dataset used for the ML models training. 

Notation Feature Input values Min. Max. 

 

𝑥1 ℎ𝑤 𝑡𝑤⁄  75 200 

𝑥2 𝑏 𝑡𝑓⁄  9 37.5 

𝑥3 ℎ𝑤 𝑏⁄  1 6.67 

𝑥4 𝑡𝑤 𝑡𝑓⁄  0.08 1.6 

𝑥5 𝑓𝑦 𝐸⁄  (235/𝐸) (355/𝐸) 

𝑥6 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑    300°C 500°C 

𝑥7 𝜃𝑓𝑙,ℎ𝑜𝑡 550°C 650°C 

𝑥8 (𝑀𝑝𝑙,20 𝑀𝑐𝑟,20⁄ )
0.5

 0.16 8.25 

 

In this table, the ℎ𝑤 𝑡𝑤⁄  and 𝑏 𝑡𝑓⁄  are the adimensional web and flange dimensions, 𝑓𝑦 𝐸⁄  is the adimensional 

yield strength for beams. 𝑀𝑝𝑙,20 is the section plastic capacity, 𝑀𝑐𝑟,20 is the elastic critical load at ambient 

temperature. The range of feature values considered in the dataset was chosen to cover a common range of 

design parameters for slender section steel beams in building structures.  

The output was defined as 𝑦 = 𝑀ult,fi 𝑀𝑝𝑙,20⁄  with 𝑀ult,fi being the ultimate capacity of a beam. The 

frequency distribution for each feature is plotted in Figure 4. 

The 6348 samples were randomly divided on a proportion of 9:1 to create the training and testing subsets, 

thus 5713 cases were considered for training and 635 cases for testing. 
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Figure 4. Frequency distribution for the different features.  

5 MACHINE LEARNING MODELS 

Four different machine learning models were considered in this study, namely Artificial neural networks 

(ANN), Support vector regression (SVR), Random forests (RF) and Polynomial regression (PR). These 

models were chosen based on previous experience in their application to regression problems of thin-walled 

sections in fire [1–3].  

The ANN models were implemented using the pyrenn [17], which relies on the mean squared error as the 

loss function and the Levenberg-Marquardt as the optimization algorithm. Among the different 

architectures, with one or two hidden layers, that were tested, the best performing one was the 8×64×4×1 

corresponding to two hidden layers with 64 and 4 neurons. 

To train and develop the SVR and RF models, scikit-learn library [18] was used. A grid search technique 

was applied to tune the hyperparameters. Table 2 and Table 3 highlight the hyperparameters that were 

considered for SVR and RF, respectively, marking with (*) the best ones. 

Table 2. Table of hyperparameters used in the SVR [18] (* indicates the best). 

kernel degree gamma C epsilon 

Rbf* 1*, 3, scale, auto 1, 0.1, 0.05 

 5, 10, 0.049*, 0.1, 0.0049 10*, 0.01, 0.005* 

 100, 1000 0.001, 0.00049 100, 0.0001 

   1000  

 

Table 3. Table of hyperparameters used in the random forests [18] (* indicates the best). 

n_estimators max_depth min_samples_split max_features max_leaf_nodes 

10,20, 10, 50, 2 *, 8, auto* none* 

50, 100, 100*, 500, 16, 24, log2 10 

250, 500, 1000 32, 64 sqrt 100 

1000*    500 

 

Finally, the same library was also used to train and develop the PR model. In this case, since models with 

higher degrees may closely fit most of the data in the training dataset, but possibly at the cost of over-fitting 

resulting in a larger error on the testing dataset, ridge regression was applied to fit the polynomial feature 

matrix. We found that a degree 5 polynomial is capable of predicting the resistance of beams within the 

range of features provided in Table 1 of the numerical dataset. 

6 RESULTS AND DISCUSSION 

In this section the performance of both analytical and machine learning models is evaluated using different 

metrics, namely the coefficient of determination R², the mean absolute error (MAE) and the mean squared 

error (MSE). The R² measures how well the observations are replicated by a model and a R² close to 1 is 

preferred. The mean absolute error (MAE) quantifies the average magnitude of errors between predicted 

and actual values, providing a measure of the model's accuracy. On the other hand, the mean squared error 

(MSE) calculates the average squared differences between predicted and actual values, emphasizing larger 



  

errors due to squaring. It is particularly sensitive to outliers and deviations from the predicted values. While 

both MAE and MSE provide insights into the model's performance, they offer different perspectives on the 

accuracy and precision of the predictions, and a lower value is preferred. For the sake of this comparison, 

the actual and predicted values are considered in terms of the ultimate capacity of the beam 𝑀ult,fi. 

Predictions from the shell FE models are considered as ground truth; validation is available in Refs [19,20]. 

Figure 5 plots the graphical representation of the accuracy obtained with the ML models, for both the 

training and testing sets. Values of R² are given in the figure. The MAE and MSE are given in Table 4. 

  
a) b) 

Figure 5. Graphical representation of the accuracy obtained with the machine learning models for the a) training and b) testing 

sets (see Table 4 for MAE and MSE). Values are for ultimate capacity in kN.m. 

Table 4. Results of different evaluation metrics for the training and testing sets of ML models. 

Model Set R2 [-] MAE [kN·m] MSE [(kN·m)2] 

ANN Train 0.99864 5.63021 18.16122 

 Test 0.99846 7.05563 20.25923 

SVR Train 0.99757 8.80275 24.24885 

 Test 0.99687 11.29989 28.89603 

RF Train 0.99961 4.30033 9.72442 

 Test 0.99902 6.03555 16.18913 

PR Train 0.99754 10.19526 24.39320 

 Test 0.99716 12.21141 27.52662 

 

The results show that all the models have good accuracy and are able to predict the capacity of the thin-

walled beams under thermal gradients. The best-performing models are the ANN with R² of 0.99864 and 

0.99846 for training and testing sets, respectively, and RF with R² of 0.99961 and 0.99902. In terms of 

MAE and MSE these are also the models with lowest values. However, it is noticeable that in the ANN the 

MAE and MSE are more consistent between training and testing sets, with an increase of 

7.05563/5.63021≈1.25 and 1.11, while the RF holds 1.40 and 1.66, for MAE and MSE, respectively. A 

further inspection based on the domain knowledge was carried out using a representation in terms of 

buckling curves, by plotting the capacity 𝑀ult,fi as a function of a slenderness parameter (𝑀𝑝𝑙,20 𝑀𝑐𝑟,20⁄ )
0.5

. 

The latter was considered as a feature of the dataset. Note that because of thermal gradients it is simpler to 



represent the slenderness parameter at normal temperature. Figure 6 plots the results for beams with two 

different sections. 

  
a) b) 

Figure 6. Buckling curve representation of the prediction models based on machine learning models for beams with a) 

I450×4+150×10 and b) I450×4+300×30 sections. 

The RF despite being the model with better results in terms of metrics denotes problems when the buckling 

curve representation is considered. Indeed, we see that the RF model exhibits some jumps/odd behaviour 

(e.g. at slenderness of 1.0) which is not physically meaningful. In particular, for the I450×4+300×30 beam 

(Figure 6 b)) we observe that for longer spans the model is diverging. This observation is likely linked with 

the increase in MAE and MSE that was observed in the results provided in Table 4. On the other hand, the 

ANN for smaller slenderness values is also overpredicting the beam capacity. The reason for this is related 

to missing values in the dataset for slenderness below 0.16 (see feature x8 in Table 1), which can be 

addressed by increasing the dataset to cover smaller ranges of slenderness. Notwithstanding, the ANN are 

deemed adequate to be used within the feature range provided in Table 1. 

For the analytical models described in section 2, different assumptions were considered in order to compare 

the results with those obtained numerically and predicted by the machine learning models. Because these 

analytical models assume a uniform temperature across the section and member length, two extreme cases 

were considered with a constant temperature equal to the hot flange (𝜃𝑓𝑙,ℎ𝑜𝑡) and cold flange (𝜃𝑓𝑙,𝑐𝑜𝑙𝑑). 

Figure 7 plots the accuracy obtained for these results (for MAE and MSE metrics, see Table 5). 

  
a) Using 𝜃𝑓,ℎ𝑜𝑡  in Eq. (6) b) Using 𝜃𝑓,𝑐𝑜𝑙𝑑  in Eq. (6) 

Figure 7. Accuracy obtained with the analytical methods assuming uniform temperature distribution based on either flange. 



  

As expected, both models (EC3 and New generation) fail to adequately predict the beam capacity. The New 

generation model, with the safe assumption of considering the highest temperature 𝜃𝑓𝑙,ℎ𝑜𝑡 everywhere in 

the section, results in a safe-sided approach but too uneconomical with a R2 of 0.63.  

To test if the lateral-torsional buckling analytical models can predict the beam capacity under thermal 

gradients, a third assumption was considered where Mfi,Rd and Mcr,fi are numerically determined from the 

FE analysis. In this latter approach, it is not possible to assess the limits of ESF to choose the correct 

buckling curve (L1, L2 or L3) thus the least severe one (L3) was considered for the sake of this comparison. 

Figure 8 plots the results obtained and Table 5 give the metrics for all the model and assumptions regarding 

the consideration of the analytical models. 

 
Figure 8. Accuracy obtained with the analytical methods with section resistance and elastic critical moment obtained 

numerically (note: New generation with curve L3). 

Table 5. Results of the accuracy of analytical methods with different assumptions. 

Model Assumption R2 [-] MAE [kN·m] MSE [(kN·m)2] 

EN1993-1-2 Uniform temperature equal to 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑  0.87587 99.92005 174.26332 

 Uniform temperature equal to 𝜃𝑓𝑙,ℎ𝑜𝑡  0.71910 144.11253 262.14421 

 Mfi,Rd and Mcr,fi from FEA (numeric) 0.86970 77.24774 178.54238 

New generation Uniform temperature equal to 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑  0.72040 145.37009 261.54127 

 Uniform temperature equal to 𝜃𝑓𝑙,ℎ𝑜𝑡  0.62616 174.10493 302.42116 

 Mfi,Rd and Mcr,fi from FEA (numeric) & L3 0.89762 63.01273 158.26233 

 

The results show that accuracy increases, with R² of 0.89762 and 0.86970 obtained for the New generation 

and EN 1993-1-2 models. This suggests that analytical approaches aiming to increase the accuracy of the 

section capacity prediction, as well as the elastic critical moment, when thermal gradients are present can 

be used with the analytical models for the lateral-torsional buckling resistance. In addition, for a more 

economical model, it might be necessary to further calibrate the lateral-torsional buckling model. For the 

sake of comparison, Figure 9 plots the results of the analytical models for the different assumptions 

considered in the form of buckling curves. 



  
a) b) 

Figure 9. Buckling curve representation of the analytical models based on a) uniform temperature of either 𝜃𝑓𝑙,ℎ𝑜𝑡 or 𝜃𝑓𝑙,𝑐𝑜𝑙𝑑  

and b) section resistance and elastic critical moment obtained numerically. 

7 CONCLUSIONS 

As predicting the ultimate strength of laterally unrestrained slender steel beams subjected to fire on three 

sides remains an elusive problem, we have adopted here Machine Learning (ML) models to investigate the 

ability to capture the key features and predict the behaviour influenced by local buckling, lateral torsional 

buckling, and thermal gradients. The key findings are summarized hereafter. 

A numerical thermal analysis performed to investigate the thermal gradients that develop in beams heated 

on three sides found that, when no slab is present, the gradient between the flanges typically ranges between 

150 °C and 250°C. The temperature of the web is similar to that in the exposed flange. These results were 

obtained on a range of protected steel profiles under ISO 834 fire. When a slab is present, lateral-torsional 

buckling may be prevented but the thermal gradients may reach values higher than 250°C in very slender 

profiles, which warrants further studies for such conditions. 

For the mechanical resistance, a numerical study based on validated nonlinear shell FEM was conducted to 

build a dataset of 6348 data points for beams with a range of cross-sections, member length, temperatures, 

and yield strength. The dataset was used to train and test ML models to predict the elevated temperature 

capacity of the beams. Four ML models were applied to the beam, namely based on artificial neural network 

(ANN), support vector regression (SVR), random forests (RF) and polynomial regression (PR).  

The ML models can fit the results of the shell FE models more closely than the state-of-the-art analytical 

methods to be included in the next generation of the Eurocodes. For columns, the ML models can predict 

the resistance at elevated temperature, for both the training and testing dataset, with a 𝑅2 greater than 0.990 

for all the models. Further inspection based on domain knowledge and buckling curve representation shows, 

however, that these models might overpredict the capacity for slenderness ranges outside the training range. 

These observations also demonstrate that domain knowledge is fundamental to investigate the accuracy of 

ML models in addition to the usual metrics that are used. 

For the analytical models, different assumptions were considered to enable the comparison with the FE 

results and ML model’s prediction. However, these models were not found capable of delivering accurate 

and economical methodologies despite different simplifying assumptions. One possibility is to develop 

improved section capacity prediction models when thermal gradients are present, but it might be necessary 

still to adjust the lateral-torsional buckling models to deliver more economic methodologies. 

This work shows that ML models can accurately predict the resistance of beams under non-uniform heating 

while also being computationally efficient. In future works, beams with higher thermal gradients and with 

restrained lateral-torsional buckling will be investigated to study cases where a slab is present, as well as 

beams under different loading conditions. 
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